
Aqueous Photo-Dimerization Using 2-Pyridylsilyl Group as a Removable Hydrophilic Group

Toshiki Nokami, Kenichiro Itami,� and Jun-ichi Yoshida�

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University,
Nishikyo-ku, Kyoto 616-8510

(Received February 19, 2004; CL-040192)

The [2þ 2] photo-dimerization of 2-pyridylsilyl-substituted
stilbene derivatives was investigated and exclusive dimer pro-
duction was observed in aqueous dilute solution. This result is
explained in terms of the local concentration effect of substrates
in water. The transformation of obtained photo-dimer was also
investigated.

Aqueous organic reactions have been recognized as impor-
tant processes because of their efficiencies and unique properties
of water.1 Although the low solubility of usual organic com-
pounds in water has been an inevitable problem in aqueous or-
ganic reactions, this can be partly overcome by introducing a hy-
drophilic group to substrate molecules. In view of the synthetic
flexibility, the use of ‘‘removable hydrophilic group’’ is extreme-
ly attractive for aqueous organic reactions.2,3

During the course of our study using 2-pyridyldimethylsilyl
group (2-PyMe2Si) as a removable hydrophilic group in aqueous
organic reactions, we observed dramatic rate acceleration in the
aqueous Diels–Alder reaction using 2-PyMe2Si-substituted 1,3-
dienes.4 This result encouraged us to examine the aqueous
[2þ 2] photo-dimerization of alkenes, which is also cycloaddi-
tion that could be accelerated in water. As a pioneering work of
aqueous photo-dimerization, Morrison reported that coumarin
dimerizes at much lower concentration in water than in organic
solvents.5 In this case, the improvement of quantum yield was
observed by a 100-fold. Ramamurthy and Syamala observed
an efficient photo-dimerization of stilbene derivatives in water.
They assumed the accelerated efficiency is ascribed to the hydro-
phobic association of stilbene molecule in water (local concen-
tration effect).6 Thus, we prepared 2-PyMe2Si-substituted stil-
bene derivatives and examined their photo-dimerization in
water. Moreover, the removal of 2-PyMe2Si group from the ob-
tained dimer was achieved by the palladium-catalyzed Hiyama-
type silicon-based cross-coupling reaction.

The 2-PyMe2Si-substituted stilbene derivatives 2a–2c were
prepared by the Mizoroki–Heck reaction of 2-pyridyldimethyl-
vinylsilane7 with bromostilbene derivatives 1a–1c under the in-
fluence of Pd2(dba)3/P(t-Bu)3 catalyst (5mol%)8 and Et3N in
dioxane. The reactions proceeded smoothly at room temperature
to furnish the 2-PyMe2Si-substituted stilbene derivatives 2a–2c
in good yields (Scheme 1).

With these substrates in hand, we examined their photo-di-
merization in water.9 For comparison, we conducted the reaction

in toluene as well. Whereas 2a did not give any [2þ 2] dimers
upon irradiation, 2b and 2c were found to give the expected di-
mers 4 together with the olefin isomerization products 3
(Table 1).

The reaction of 2b gave the [2þ 2] dimer 4b (33%) and iso-
merization products 3b (7%) after irradiation for 20 h (Entry 1).
Although the reaction in toluene gave the dimer 4b in a similar
amount (36%), significant amount of 3b (41%) was formed (En-
try 2). This trend became more significant when 2c was used as a
substrate. While the reaction in aqueous HCl gave the dimer 4c
in 58% yield (Entry 3), the reaction in toluene produced solely
the olefin isomerization product 3c (Entry 4). The expected di-
mer was not formed at this concentration (0.005M). These re-
sults indicate that photo-dimerization could also be facilitated
in water. In addition, the solvent effect in olefin isomerization
might be also worthy of noting. As for accelerated photo-dime-
rization in aqueous solution, the local concentration effect, as
Ramamurthy proposed,6 seems to be responsible for the prefer-
ential dimerization in water. In accord with this assumption, the
photo-dimerization of 2c did occur in toluene at higher concen-
tration (Entries 5 and 6).

The isomer distribution of photo-dimer 2c was examined in
detail. The all possible isomers [syn head-to-head (H-H) (4cA),
syn head-to-tail (H-T) (4cB), anti H-H (4cC), and anti H-T
(4cD)] were found and assigned by the NOE experiments and
by the comparison with known stilbene dimers reported in the
literature (Figure 1).10 We found that syn isomers (4cA and
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Entry 2 Solvent
Time Recovered 3 4
/h 2/% /% /%

1b 2b H2O 20 60 7 33
2 2b toluene 20 23 41 36
3b 2c H2O 20 29 13 58
4c 2c toluene 12 26 74 0
5d 2c toluene 20 37 40 23
6e 2c toluene 20 7 5 88

aUnless otherwise stated, the reactions were carried out at
0.005M. b1.0 equiv. of HCl was added. cThe reaction reached
the steady state within 12 h. d0.025M. e0.25M.
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4cB) were obtained exclusively in both aqueous (93% syn,
0.005M) and toluene (88% syn, 0.25M) solutions.

We initially assumed that the synH-H dimer (4cA) would be
obtained as a major product if 2-PyMe2Si group worked as a hy-
drophilic group, which induces a H-H orientation of stilbene de-
rivatives at the surface of their aggregates in water.11 Contrary to
our assumption, the aqueous reaction gave the syn H-T dimer
(4cB) preferentially (4cA/4cB = 16/84). Since the H-T dimer
was also produced preferentially in toluene (4cA/4cB = 38/
62), the observed head-to-tail selectivity may be primarily attrib-
uted to the inherent stereoelectronic nature of this substrate (e.g.,
the steric repulsion between the 2-PyMe2Si groups). These re-
sults suggest that the photo-dimerization exclusively takes place
at the interior of large aggregates, where there must be little ori-
entation effect. Thus, the effect of water can be regarded as ad-
ditive for this selectivity. Nevertheless, the enhanced selectivity
may be worthy of noting and we assume the followings as the
plausible explanations for the selectivity enhancement: (i) the
electronic repulsion between pyridinium ions in water; and (ii)
the attractive hydrogen bonding between the oxygen atom of
the acetyl group and the pyridinium proton in acidic aqueous so-
lutions.

The removal of 2-PyMe2Si group from the photo-dimer 4c
was achieved by the Hiyama coupling.12 This reaction also
serves as a method for the extension of �-system by introducing
aromatic groups. Thus, the treatment of 4c with 4-iodobenzoic
acid ethyl ester (2.4 equiv.) under the influence of PdCl2(PhCN)2
catalyst (10mol%) and Bu4NF (1.4 equiv.) furnished the cou-
pling product 5c in 56% yield (Scheme 2).13

In summary, the observations described here indicated that
the use of 2-PyMe2Si group as a removable hydrophilic group
is quite effective for the aqueous photo-dimerization of stilbene

derivatives. The acceleration at lower concentration is attributed
to the local concentration effect. It is also noteworthy that the
photo-dimer thus obtained could be transformed into a more
extended �-system using Hiyama coupling by the agency of
2-PyMe2Si group.
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